Record Details

Mobile-based Activity Monitoring System for the Self-quarantine Patient

Applied Technology and Computing Science Journal

View Archive Info
 
 
Field Value
 
Title Mobile-based Activity Monitoring System for the Self-quarantine Patient
 
Creator Sri Indrawanti, Annisaa
Mandyartha, Eka Prakarsa
 
Subject Activity Recognition
Classification
Mobile
Monitoring system
 
Description Nowadays, not all the patient can be hospitalized because of the COVID-19 pandemics. So, the self-quarantine for the patient with the various diseases will be the given solution by the hospital. It would make the hospital needs a system that can monitor the activity and the position of the patient from a distance. Nowadays, mobile phone is equipped by the sensor that can detect the user movement. Not only the user’s position, but also the user’s activity. In this paper, it will be developed an activity and position monitoring system for the self-quarantine patient that can be used in their home. The mobile activity monitoring can be achieved by activity recognition using classification method. For the needs of performance testing, we evaluate some classification method for activity recognition to compare the among classification method for the activity recognition. Some tested classification methods are Naïve Bayes, KNN, KStar and TreeJ48. Furthermore, we tested the impact of sliding windows per N samples taken to the accuracy of the activity recognition. We choose the best N sample that could give the best accuracy for activity recognition. The system not only monitor the patient’s activity, but also the patient’s position. The position monitoring can be achieved using Google Maps API. The result is Naive bayes has the accuracy of 81.25%, KNN has the accuracy of 78.125%, KStar has the accuracy of 78.125% and TreeJ48 has the accuracy of 75%. The N sample that could give the best accuracy is 6 with the accuracy of 90.15%.
 
Publisher Unusa Press
 
Date 2021-07-31
 
Type info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
 
Format application/pdf
 
Identifier https://journal2.unusa.ac.id/index.php/ATCSJ/article/view/2085
10.33086/atcsj.v4i1.2085
 
Source Applied Technology and Computing Science Journal; Vol. 4 No. 1 (2021): June; 56-62
TEKNOLOGI DITERAPKAN DAN JURNAL SAINS KOMPUTER; Vol 4 No 1 (2021): June; 56-62
2621-4474
2621-4458
10.33086/atcsj.v4i1
 
Language eng
 
Relation https://journal2.unusa.ac.id/index.php/ATCSJ/article/view/2085/1431
 
Rights Copyright (c) 2021 Annisaa Sri Indrawanti, Ika Prakarsa Mandyartha
https://creativecommons.org/licenses/by-sa/4.0